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ABSTRACT

The method of least squares is applied to the problem of
analyzing a decay record to determine the damping constants for
a dry friction-viscous damped, single-degree-of-freedom system.
Solution of the set of non-linear equations which yield the constants
is obtained by applying the Newton-Raphson method of iteration.
Sample calculations show that the method is not well-suited for
manual computation.

A program is presented for calculating the damping con-
stants by means of a digital computer.
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INTRODUCTION

The objective of this work was to develop an enalytical method
for analyzing an experimentally obtained decay record to determine

the damping constants for a dry friction-viscous damped single-degree-
of-freedom system.

11A semi-graphical, trial and error method Iof analysis i a available;

however, as pointed out by Jacobsen and Ayre, a precise determination
of the damping constants by that method is time consuming. Moreover,

engineering judgment must be used to determine when the constants have
been calculated with sufficient accuracy; and, the semi-graphical pro-
cedure may lead to inconsistent results.

In this report the method of least squares is applied to the
problem of analyzing a vibration trace. The method yields consistent
results, but is not well-suited for manual computation. A program is

presented for carrying out the calculations by means of a digital
computer.

ANALYTICAL DEVELOPMENT

The present study is limited to linear systems in which the
damping forces are due to a combination of viscous friction and dry

friction. The objective of the study is to determine the damping

constants from an experimentally obtained decay curve. As indicated
in Figure 1, the experimental curve for such a system will not, in

general, be an exact representation of the theoretically correct curve;.
and the direction, but not the precise location, of the time axis of
the experimental curve is known.

The generally accepted procedure employed in analyzing a decay

record is to first construct a theoretical curve that is a "good"
approximation to the experimental curve. Then, it is assumed that
the damping constants for the system are the damping constants
which appear in the set of parameters that define the theoretical
curve. Clearly, it is essential that a definition of what constitutes
a good approximation be given in terms of measurable quantities. For
simplicity the goodness of an approximation is masured in terms of
peak displacements on the theoretical and experimental decay curves.
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Statement of the Problem

With the preceding discussion as background the problem may be
stated as follows.

With reference to Figure 1, let 3E " n be peak displace-

ments on an experimental decay curve, where Xi is measured from an axis

which is parallel to, but not necessarily coincident with the true
steady state displacement axis; let I' o I Tit . n be the corresponding

peaks on a theoretical curve defined by the equations

Y + h (1)

+ 2vp ' + p2 + (sgn t)A] - 0 (2)

Y(O) - Yo ) - 0 (3)

and, determine the distance h, the initial displacement Y0 and the

damping constants v and A such that the "square error"
1n

EE(V, A, Yo0' h) = ( i  i 2 (4)

is a minimum.

To solve the problem, one must first determine how Vi depends

on the parameters appearing in Equations 1, 2, and 3. This is done
in the following section.

Decay Curve Analysis

The extreme values of the displacement Y(t) which are obtained
by solving Equation 2, occur at equally spaced intervals of time, and
it is not difficult to show that the peak displacements are given by
the formulas

Y, .= To0 (1 = O) (5a)

Y, = A (1 + 6)(- 1)i -
6yi. (i 0 0) (5b)

where
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6 e (6)

and

v - damping ratio for viscous damping

A - damping constant for dry friction damping

For future use, it is noted here that Equation 5 may be rewritten in
the form

Y,= A( + 6 )ai + Yobi (5c)

where

i-i

a ° -o ; a, = (-1 )il 6k
k=o

b = 1 ; i  (-I)ii

Equations 1 and 5 may be combined to obtain

Yo a Y0 + h (7a)

Y, = 6(1 + )(-)i-I - 6(yi. 1 - h) + h (7b)

In view of Equation 6, it follows that the relationships expressed by
Equation 7 show how Yi depends on the damping constants, the initial

displacement Yo, and h. It should be noted that Ti is independent of

p (see Equation 2).

The solution of Equation 7 is of interest. Setting i w k,
i - k + 2j, i - k + 2j + 1, where j is an integer, in Equation 7b
and combining the resulting equations gives

6 - - ( - k+2j)( k-l - Vk+2J-l )  (8)
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11+k-1 [yk - L+2j+l) +'(k- 1 k+2jJl (9)

h - - A(-)1 + (Yk + 86k-1)(1 + 8)' (10)

and, from Equation 7a,

Yo - Yo - h (11)

Equations 8 and 9 can be used to estimate the damping constants for the
system characterized by the experimental decay curve by substituting "k
for Tk"

Equations 8 to 11 show that 6,A , 0 and h are invariant functions

of the peak displacements on the theoretical decay curve. Therefore,
if the invariance is not preserved when 7, is replaced by Ik then it is

k
known that the experimental decay curve does not coincide with the
theoretical curve.

Calculation of Damping Constants by the Method of Least Squares

Nothing is lost and the subsequent derivations are simplified if
v is replaced by 6 in Equation 4. Then, the equation becomes

E (8, A, Yo, h) --II (x - y)2 (12)

The variables 6, A, Yo, h must satisfy necassary conditions for E to
be a minimum. These conditions are,

9,6 - F (80 A, YO, h) - 0 (13a)

E,A - FA(8, A, Yo) h) - 0 (13b)

E,Yo = F (8O (, ,Yo ,h) - 0 (13c)

E,h - Fh(6, A, Yo, h) - 0 (13d)

where the comma notation has been used to indicate partial derivatives
(i.e., E,6 -6E/86, etc.).
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Equations 13 are linear in A, YO and h, but nonlinear in 8; and
they are not amenable to solution by analytical methods. However, the
equations can be solved numerically by the Newton-Raphson Method for
simultaneous equations.

To derive the pertinent equations, and to outline the procedure,
let 60, e I , h be approximate roots; and, let d8, dA, dY., dh be

corrections so that

6 = 60 + d6 (14a)

a = A° + dA .(14b)

YO + dYo  (14c)

h -h + dh (14d)

Then, Equations 13 become

F8 (60 + d6, . , t + dh) - 0 (15a)

FA (60 + d6, ., h + dh) - 0 (15b)

FYO(80 + d6, . ,h + dh) = 0 (15c)

Fh (6 ° + d8, ., h + dh) M 0 (15d)

Expanding each of Equations 15 by Taylor's theorem for a function of
four variables, and discarding all terms containing products and/or
powers of d8, dL, etc., leads to the following equations to be solved
for the "first corrections," d6 dA1  etc.

+ (E 6)Od6l + (E As)°d A 1 + (E, YO)°dY + (E h)Odhl - 0 (16a)

+ (E 6)0d6l + (EA)°d L + (E,YA)°dy + (E,ha)Odhl - 0 (16b)
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F 01 1 c)0Y(hy0dhF +(EI d6+ (E +dYE+ (E dhl -0 (16c)YO +(,6 Yo d6 L~Y0)dl , YOy YO hYo

0 0 01 (Ey 1 1
Fh + (Eh)d 6  + (E Ah)dA + (E h dY + (E,hh) dh = 0 '(16d)

where the superscript zero indicates that the quantity is to be evaluated

at the "point" (60, A ,  , h°)

Now, the improved roots are

6 = 60 + d0 1  (17a)

A1 a A0 + dA1  (17b)

- Yo + dYo (17c)

h1 . ho + dh1  (17d)

Additional corrections are found by repeated applications of Equations 13
and 16.

All possible combinations of first and second partial derivatives
of Yi are needed to evaluate the differential coefficients appearing in

Equations 16. To calculate the derivatives we first combine Equations 1
and 5c to obtain

7i = A(l + 6)ai + Yobi + h (18)

Then, since ai and bi are functions of 6, differentiation of Equation 18
gives (using primes to indicate differentiation with respect to 6)

Yi,6 " AE(l + 6)a + ai] + Y0 b (19)

Yi,A - (1 + 8)ai (20)

b (21)

!i,h .1 (22)
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A [(l + 6)a' + 2a'j] + Yob' (23)

YiA6 " (1 + 6)a + a (24)
ii

0i Yo 6 1 (25)

All other second partial derivatives of Ti are zero.

Evaluation of the derivatives is simplified by using recurrence
formulas which follow from the definitions of ai and bi (see Equation 5c).

It is easy to establish the following relations

ao - 0 ; ai W - ai- + bil (26)

b - 1 ; bi - - 8b (27)

- 0 ; ai - -ai-l + b'i- (28)

-0 ; bi -- bi- I b . 1  (29)

aa ,0 ; -- ai + (30)

bo  0 ; b"- - - 2b._ - 6b' 1  (31)

The first partial derivatives of E are obtained from Equation 12.
The derivatives are

E,5 - - ZY - F (32)
, ~ i ,6 F

E -- E ZiYi A " FA  (33)

9 y° - - E Z Y 3 F (34)

Eh = - - Zi i, h M Fh (35)
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where all summations are from i - 0 to i a n and Z - YV The
second partial derivatives appearing in Equations 16 are

E,6 - Z E - ZiY ,88 + (Y,8)2] (36)

E [ - Ziyi,A8 + yi,AYi,61 - E 5A  (37)

E 'YO - Ziyi,ye8 + Ii-yo 7,6 E 8 yo (38)

E h6 Y i,h ' E-6h (39)

2 (40)

E =:y " o  (41)

E,hA ' - E,Ah (42)

E, = 2 (Yiy (43)

E,hYo Z Yi,Yo = EO h  (44)

Ehh n + 1 (45)

where all summations are from i - 0 to i - n, and use has been made of
the fact that certain second partial derivatives of are identically
zero.

Because of the special nature of Equations 33, 34, and 35, it is
always possible to determine A, Y. and h as functions of 6such that
FAFV , and F are identically zero, as required by the necessary con-
dition (Equations 13) for E to be a minimum. This fact can be used to
advantage in calculating the roots of Equations 13. On setting F, I;,
and Fh equal to zero, combining Equations 20, 21, and 22 with Equations
33, 34, and 35 and rearranging terms, one obtains the equation's

A(1 + 8) Z a2 + Y E a b + h E a M E (46)
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A(l + 6) E a bi + Y b2 + h E b = E Xlb i  (47)
i ii

A(l + 6) E ai + Y E bi + h(n + l) - E X7 (48)

where all sumnations extend from i - 0 to i a n. It should be observed
that Equations 46 to 48 are nothing more than Equations 13b, 13c, and
13d, but written in an alternate form.

Numerical Procedure

Equations 8 to 11 can be used to calculate the approximate roots
needed to start the numerical solutio. However, trial calculations
show that it is better to calculate 8 from E uation 8 (using, of course,
K in place of Yk), and then calculate K, X, and h'by writing and

solving Equations 46 to 48 The procedure used to solve the problem is
as follows:

I0
1. Use Equation 8 to calculate 60.

2. Calculate s, , and h0 by writing and solving Equations 46 to
48.

0

3. Calculate F6 using Equation 32.

4. If 0 0, the solution has been found, since FPA F , and

are zero by construction.

5. If Fo 0 0 calculate the differential coefficients in Equations 16

by applying Ec uations 19 to 31, and Equations 36 to 45.

6. Solve Equations 16 for d81

7. Replace 60by 80+ d81 and repeat the process.

Damping Ratio and Logarithmic Decrement

The damping ratio and the logarithmic decrement are measures
of the amount of viscous damping in a system. Let A be the logarithmic
decrement. It is shown in elementary vibrations that

".J (49)

where v is the damping ratio. In view of Equation 6 we have
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A *2Ln(6 1) (50)

and, from Equation 49

A (51)

Discussion

Sample calculations demonstrating the use of the theory are
presented in Appendix A. In the example, convergence of the iterative
procedure was rapid; two iterations were required. The decay record
used in the example was taken from Reference 1. Because the calcula-
tions are lengthy, only the first six (of thirteen) peaks were used in
the analysis.

The same decay curve was analyzed by means of a digital computer,
using six peaks and using twelve peaks. Computer results are presented
in Appendix B. A comparison of the results indicates that an analysis
based on a partial or incomplete decay record may not lead to accurate
values of the damping constants.

It is essential to note that an experimental decay curve may
deviate from the theoretical curve for a linear system with viscous
friction and dry friction damping because (a) the recorded decay curve
is not an accurate representation of the theoretical curve; or (b)
other forms of damping are present; or because of (a) and (b). The
methods presented in this report are strictly applicable only when
deviation can be assigned to cause (a). The methods may be applied
when other forms of damping are present, if it is assumed that the
calculated values of 8 and A represent the contribution of viscous
friction forces and dry friction forces to the total damping force.

CONCLUSION

It has been shown how the method of least squares can be applied
to the problem of analyzing a decay record to calculate damping constants.
Sample calculations show that the method is not well-suited for manual
computation.
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Appendix A

SAMPLE CALCULATIONS

In this appendix the theory is applied to the decay record
shown in Figure A-1. The decay record is a reproduction of the
curve shown in Figures 5-13, page 216, in the text "Engineering
Vibrations," by L. S. Jacobsen and R. S. Ayre. Because the
calculations are lengthy, only the first six peaks on the decay curve
were considered. The procedure given on page 10 was used in solving
the problem. The computations for the first cycle of the procedure
are carried out below. Where possible, numerical results are
presented in tabular form.

Calculation of 60

Using Equation 8 with k - 1, j - 1 we obtain

60 = - 4.84 + 3.56)(5.60 - 4.17) " 1 - 0.8951

and, with k - 2, j = 1 we have

60 M - (4.17 - 3.01)( - 4.84 + 3.56)l - 0.9062

0
The average value is approximately 0.9, and 6 - 0.9 is used to
start the solution. The calculation of ai, bi, and their derivatives
is displayed in Table A-1.

13
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Table A-I. Computation of ai, bi, and Associated Derivatives

0° -0.9

Column (1) (2) (3) (4) (5) (6) (7) (8)

Equation - - 26 27 28 29 30 31

Quantity i Y. ai b a' bi a" b"
ii i i

0 5.60 0 1.0 0 0 0 0

1 -4.84 1.0 -0.9 0 -1.0 0 0

2 4.17 -1.9 0.81 -1.0 1.8 0 2.0

3 -3.56 2.71 -0.729 2.8 -2.43 2.0 -5.4

4 3.01 -3.439 0.6561 -5.23 2.916 -7.4 9.72

5 -2.42 4.0951 -0.5905 8.146 -3.2805 17.12 -14.58

Equations 46 to 48 become

40.5507 A°(1 + 60) - 9.0891 ' + 2.4661 h° = -42.6721

-9.0891 A°(1 + 60) + 3.7767 Y + 0.2466 h° - 19.6721

2.4661 AO(1 + 80) + 0.2466 o + 6 e - 1.96000

and the solution is

A° (1 + 6° ) - 0.2044

- 5.6101

h° - 0.0121

-
° 0.1076

15



Calculation of First Corrections

The basic quantities needed to calculate the first corrections
are shown in Table A-2.

Substituting the quantities appearing in columns 5 and 10 into
Equation 32 gives

F6  0.1139

and by the selection of ', ' and

FP, = Fh  0A YO h

Now, Equations 16 become

1 111
776.6387 d6 - 335.7554 dA + 41.5069 dY0 - 9.9599 dh - 0.1139

11 -1 +465 h1W0-335.7554 d6 + 146.3881 dA - 17.2692 dYo + 4.6856 dh - 0

1 -1 1 1W41.5069 d8- 17.2692 dA + 3.7767 dY + 0.2466 dh - 0

1 1 6 1
9.9599 d8 + 4.6856 dA + 0.2466 dY0 + 6 dh - 0

1And, the solution for d8 is

d6 - 0.0254

So, the approximate value of 8 to be used in the second cycle of
iteration is

51 80 1
8 + d6 1 0.9254

16
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Subsequent Calculations

In the second cycle, with the above value for 6 it is found by
writing and solving Equations 46 to 48 that

1 M 5.5820575

1
h - 0.0124610

A1  0.1618079

and F1 . -0.0022366

The complete solution of Equations 16 in the second cycle of iteration is

d82 = 0.5346 x 10 3

dA2 = 1.1264 x 10 - 3

dY2 - -0.5928 x 10 - 3

dh 2 . 0.0081 x 10 - 3

At the end of the second cycle of iteration, the new approximate value
of 8 is

2 - 81 + d62 . 0.9259346

With the above value for 8 the solution of Equations 46 to 48 is

A2 . 0.1629342

2 5.5814647

h2 . 0.0124691

and it is found that

F2  -0.36 x 10- 5

8

18



F 2 is sufficiently small to justify termination of the calculation.
8

Table A-3 gives a sunmmary of the successive approximations to the
damping constants.

Table A-3. Summary of Successive Approximations

per cent per cent
Cycle 8 change A change

0 0.9 --- 0.1076

1 0.9254 +2.82 0.1618079 +50.4

2 0.9259346 40.06 0.1629342 + 0.7

The computer program presented in Appendix B was used to
solve the example problem, and to analyze the decay curve shown
'in Figure A-1 using the first twelve peaks. Table A-4 shows the
values for 8 as calculated by hand, and as calculated with the
IBM 1620 digital computer.

Table A-4. Comparison of Calculated Values of 8 and u

No. of Peaks Manual Solution Computer Solution

N 6 8 V

6 0.9259346 0.9259393 0.0244855

12 0.8952082 0.0352147

Consider, now, the per cent change in V. From Table A-4, this
change is calculated to be 30.57..
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Appendix B

COMPUTER PROGRAM

The computer program was written in the Fortran language and
is shown on pages 21 to 24. The program was designed to analyze
a decay record with a maximum of 30 peaks. In the computer the

k+l / k< "
iteration procedure is terminated when d6 / 6 1 - or when
k - 100 (the maximum number of iterations).

Listings of typical sets of input data are shown on page 25
and the output is shown on page 26. Printing of the Ti can be
suppressed at the option of the user by placing a zero punch in
column 12 of the control card. If the iteration procedure fails
to converge within 100 cycles, the output consists of a listing
of the ! and nothing else is printed.

Any number of decay records may be analyzed in sequence, and
the computer will halt on a read instruction after the last decay
record has been processed.

20
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